

UNCARINIC ACIDS: PHOSPHOLIPASE Cγ1 INHIBITORS FROM HOOKS OF *UNCARIA RHYNCHOPHYLLA*

Ji Suk Lee, Mi Young Yang, Hosup Yeo, Jinwoong Kim,* Hyun Sun Lee,† and Jong Seog Ahn†

College of Pharmacy, Seoul National University, Seoul 151-742, Korea

†Korea Research Institute of Bioscience and Biotechnology (KRIBB),
P.O. Box 115, Yusong, Taejon 305-600, Korea

Received 28 January 1999; accepted 8 April 1999

Abstract: Bioactivity-guided fractionation of the CHCl₃ extract from hooks of *Uncaria rhynchophylla* led to the isolation of two triterpene esters, namely uncarinic acids A (1) and B (2). Their structures were established by spectroscopic and chemical methods. These compounds inhibited phospholipase C γ 1 with IC₅₀ values of 35.66 and 44.55 μ M, respectively. © 1999 Elsevier Science Ltd. All rights reserved.

Phosphatidylinositol-specific phospholipase C (PI-PLC) is the key enzyme involved in the signal transduction of growth factors, neurotransmitters and hormones. The activation of this enzyme causes the hydrolysis of phosphatidylinositol 4,5-biphosphate, which generates inositol 1,4,5-triphosphate and diacylglycerol. These two second messengers induce the increase of intracellular free Ca^{2+} concentration and the activation of protein kinase C, which lead to a series of events that culminate in the DNA synthesis and cell proliferation. It has been reported that PI-PLC activity was increased in a number of human cancer cells, suggesting that PI-PLC, especially γ isoforms, would be a good target for the development of anticancer agents¹.

In the previous paper², we have isolated the PI-PLCγ1 inhibitors with cytotoxic activity against several human cancer cells from the sarcotestas of *Ginkgo biloba*. Our continued interest to find the natural product inhibitors of PLCγ1 has led to the isolation of two new triterpene esters, uncarinic acid A (1) and its isomer, uncarinic acid B (2) from the hooks of *Uncaria rhynchophylla* (Miquel) Jackson (Rubiaceae). The bioactivity-guided isolation, structure elucidation, PI-PLCγ1 inhibitory activity and cytotoxic activity of the compounds are described.

$$R_{10}$$
 R_{10}
 R_{10}
 R_{23}
 R_{24}
 R_{24}
 R_{24}
 R_{25}
 R_{25}

Isolation

The methanolic extract (800 g) from hooks (20 kg) of *U. rhynchophylla* was partitioned between H₂O and CHCl₃. CHCl₃ layer was evaporated *in vacuo* to give the CHCl₃ extract (600 g), exhibited PI-PLCγ1 inhibitory activity. Bioactivity-guided fractionation of the CHCl₃ extract by silica gel column chromatography led to the isolation of crude mixture of triterpene esters 1 and 2, which was further purified by sequential column chromatography over Sephadex LH-20 and RP-HPLC to afford 1 (52.3 mg)³ and 2 (63.2 mg)³ as white amorphous powders.

Structure Elucidation

Uncarinic acid A (1): The molecular formula of 1, $C_{40}H_{56}O_7$, was determined by FABHRMS (m/z 671.3956 [M+Na]⁺). The IR spectrum of 1 exhibited characteristic bands at 3423 (OH), 1694 (C=O), 1630 (olefinic C=C), 1595 (aromatic C=C) and 970 (trans CH=CH) cm⁻¹. Compound 1 yielded the acetate (1a) and the methyl ester (1b) on reaction with $Ac_2O/pyridine$ and CH_2N_2 , respectively. The ¹H-NMR spectra of 1a and 1b displayed signals of δ 2.25 and 1.98, and a methoxycarbonyl at δ 3.50, respectively, indicating the presence of two hydroxyl groups, and one free carboxylic acid moiety in 1.

The 1 H- and 13 C-NMR spectral data suggested that 1 was a triterpene ester possessing three functionalities, namely, a carboxylic acid unit, a secondary hydroxyl group, and a *trans*-ferulic acid moiety esterified at a hydroxymethyl substituent. It was further supported by the appearance of prominent peaks at m/z 194.0585 ($C_{10}H_{10}O_4$, M^4 -454) for ferulic acid moiety, and at m/z 454.3441 ($C_{30}H_{46}O_3$, M^4 -194) for triterpenoid part in the EI mass spectrum. In addition, the presence of significant peaks at m/z 201 (246- CO_2H) and 189 (207- H_2O), resulting from the sequential cleavage of the *retro*-Diels-Alder fragments at m/z 246 and 207, suggested that 1 was a Δ^{12} -unsaturated triterpene ester with a hydroxyl group in ring A or B, and a free carboxylic acid unit in ring D or $E^{4,5}$.

The ¹H-NMR spectrum of **1** showed characteristic signals for the *trans*-ferulic substituent, e.g. 1,2,4-trisubstitued aromatic [δ 6.89 (d, J = 8.1 Hz), 6.98 (d, J = 1.8 Hz) and 7.02 (dd, J = 8.1, 1.8 Hz)], *trans*-oriented vinylic [δ 6.18 and 7.50 (each d, J = 15.9 Hz)], and aromatic methoxy [δ 3.88 (s)] protons. Comparison of the six tertiary methyl signals in the ¹H-NMR spectrum of **1**, as well as its ¹³C-NMR data with published values, allowed the triterpenoid carbon skeleton of Δ ¹²-oleanene⁶. Basic hydrolysis of **1** afforded the known compounds, 3β ,27-dihydroxyolean-12-en-28-oic acid (**3**) and *trans*-ferulic acid, and identity of these compounds were established by comparison of their physical and spectral data with the literature values^{7,8}.

In the 13 C-NMR spectrum of 1, the downfield shift of C-27 signal and the upfield shift of C-14 signal were observed when compared with those of 3 (Table 1). Furthermore, the HMBC spectrum of 1 showed distinct correlation through two and three bonds from δ 4.14 and 4.29 (H₂-27) to δ 39.88 (C-8), 137.20 (C-13), 45.20 (C-14) and 23.40 (C-15). These findings indicated that the ferulic acid moiety in 1 is linked to the C-27 hydroxyl group of 3. From all the above data, the structure of 1 was elucidated as 3β -hydroxy-27-*E*-feruloyloxyolean-12-en-28-oic acid.

Table 1. NMR Chemical Shifts of the Triterpenoids 1-3^{a, b}.

Position	1 (δ C)	1 (δ H)	2 (δ C)	2 (δ H)	3 (δ C)
1	38.84		38.12		37.96
2	26.72		26.69		27.04
3	78.50	3.15 dd (8.0, 7.5)	78.47	3.15 dd (8.1, 7.4)	78.72
4	38.64		38.50		38.67
5	55.12		54.98		54.73
6	18.24		18.14		18.15
7	33.10		32.80		32.38
8	39.88		39.75		39.64
9	48.77		48.45		48.29
10	37.13		37.00		37.04
11	23.90		23.71		24.11
12	126.90	5.57 t (3.5)	126.97	5.51 t (3.3)	129.56
13	137.20		137.25		137.70
14	45.20		44.99		47.47
15	23.40		23.34		24.46
16	22.82		22.68		22.37
17	46.12		46.00		46.06
18	41.00	2.86 dd (13.8, 3.9)	40.70	2.81 dd (14.0, 3.3)	40.31
19	44.80	0.72 m	44.81	0.70 m	44.87
		1.05 dd (13.8, 2.5)		1.01 dd (14.0, 2.5)	
20	30.57		30.50		30.75
21	33.67		33.58		33.40
22	32.43		32.37		32.23
23	27.91	0.93 s	27.81	0.86 s	27.97
24	15.56	0.72 s	15.44	0.67 s	15.74
25	15.51	0.88 s	15.37	0.77 s	15.46
26	17.92	0.74 s	17.96	0.68 s	18.52
27	65.91	4.14 d (12.6)	65.67	4.14 d (12.7)	62.99
		4.29 d (12.6)		4.25 d (12.7)	
28	181.23	,	181.30	` ′	183.25
29	32.91	0.83 s	32.89	0.74 s	33.00
30	23.53	0.88 s	23.47	0.80 s	23.80
1'	166.58		167.39		
2'	116.58	6.18 d (15.9)	115.34	5.69 d (13.0)	
3'	143.35	7.50 d (15.9)	144.96	6.73 d (13.0)	
4'	125.47		122.99		
5'	113.05	6.98 d (1.8)	109.76	7.79 d (1.9)	
6'	146.20	5.75 W (110)	144.96	= ()	
7'	147.17		147.31		
8'	114.13	6.89 d (8.1)	115.73	6.83 d (8.2)	
9'	126.90	7.02 dd (8.1, 1.8)	126.60	7.10 dd (8.2, 1.9)	
-OCH ₃	55.90	3.88 s	55.88	3.88 s	

^a JEOL LA 300 or Bruker AMX 500 spectrometer, CDCl₃-CD₃OD 9:1. ^b Coupling constants are in parentheses.

Uncarinic acid B (2): The spectral data of 2 were very similar to those of 1 (Table 1). However, the 1 H-NMR spectrum of 2 exhibited the *cis*-conjugated olefinic proton signals at δ 5.69 and 6.73 (each d, J = 13.0 Hz), indicating the presence of *cis*-ferulic acid moiety in 2. Through the same assignment as that of 1, the structure of 2 was established as 3 β -hydroxy-27-Z-feruloyloxyolean-12-en-28-oic acid. Dissolved in MeOH, 1 and 2 equilibrate with a ratio of 65% (*trans*) to 35% (*cis*).

Biological Activity

The PI-PLC γ 1 and cytotoxicity assays were performed by the methods of Rhee *et al*⁹ and NCI¹⁰, respectively. Uncarinic acids A (1) and B (2) inhibited phospholipase C γ 1 with IC₅₀ values of 35.66 and 44.55 μ M, respectively. Moreover, these compounds inhibited growth of several human cancer cells with IC₅₀ values of 0.73~3.53 μ g/mL (Table 2).

Table 2. Growth Inhibitory Effects of Uncarinic acids A (1) and B (2) on Human Cancer Cell Lines.

Compound	IC ₅₀ (μg/mL)				
Compound –	A-549ª	HCT-15 ^b	MCF-7°	HT-1197 ^d	
1	0.73	1.41	2.03	3.53	
2	1.79	1.44	2.59	2.34	

^a human lung adenocarcinoma, ^b human colon adenocarcinoma, ^c human breast adenocarcinoma,

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Research Center for New Drug Development (RCNDD) at Seoul National University.

References and Notes

- 1. Hill, S. R.; Bonjouklian, R.; Powis, G.; Abraham, R. T.; Ashendel, C. L.; Zalkow, L. H. Anti-Cancer Dyug Design 1994, 9, 353; and references cited therein.
- 2. Lee, J. S.; Cho, Y. S.; Park, E. J.; Kim, J.; Oh, W. K.; Lee, H. S.; Ahn, J. S. J. Nat. Prod. 1998, 61, 867.
- 3. Physical data (1): white amorphous powder, mp 263-266 °C (dec); UV: λ_{max} (isopropyl alcohol) nm (log ϵ): 203 (4.21), 236 (3.95), 327 (4.20); IR: ν_{max} (KBr): 3423, 1694, 1630, 1595, 1159, 1032, 970, 845 cm⁻¹; FABHRMS (positive): m/z 671.3956 (calcd for $C_{40}H_{56}O_7Na$: 671.3924); EIMS: m/z (rel.int.): 454.3441 (M⁻- $C_{10}H_{10}O_4$, 15), 421 (5), 375 (3), 300 (5), 299 (6), 285 (10), 255 (8), 246 (15), 239 (15), 207 (8), 201 (13), 194.0585 (M⁺- $C_{30}H_{46}O_3$, 100), 189 (5), 179 (25), 133 (32), 100 (32), 77 (32), 69 (42), 55 (50). (2): white amorphous powder, mp 163-165 °C (dec); IR: ν_{max} (KBr): 3422, 1699, 1629, 1595, 1277, 1163 cm⁻¹; FABHRMS (positive): m/z 671.3923 (calcd for $C_{40}H_{56}O_7Na$: 671.3924).
- 4. Ogunkoya, L. Phytochemistry 1981, 20, 121.
- 5. Shiojima, K.; Arai, Y.; Masuda, K.; Takase, Y.; Ageta, T.; Ageta, H. Chem. Pharm. Bull. 1992, 40, 1683.
- 6. Mahato, S. B.; Kundu, A. P. Phytochemistry 1994, 37, 1517.
- 7. Maillard, M.; Adewunmi, C. O.; Hostettmann, K. Phytochemistry 1992, 31, 1321.
- 8. Häberlein, H.; Tschiersch, K. P. Phytochemistry 1994, 35, 765.
- 9. Rhee, S. G.; Ryu, S. H.; Lee, K. Y.; Cho, K. S. In *Methods in Enzymology*; Dennis, E. A., Ed.; Academic Press: New York, 1991, Vol. 197, pp. 502-511.
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise,
 P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83,
 757.

d human bladder adenocarcinoma.